tert-Butyl N-[1-(3-tert-Butyl-2-hydroxyphenyl)-1-hydroxy-3-phenyl-2-propyl]carbamate

BY GABRIELE BOCELLI AND ANDREA CANTONI

Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze, 43100 Parma, Italy

(Received 3 July 1989; accepted 14 August 1989)

Abstract. $C_{24}H_{33}NO_4$, $M_r = 399.5$, orthorhombic, b = 10.490 (2), $P2_{1}2_{1}2_{1}$ a = 23.575(2),c =V = 2363.7 (7) Å³, Z = 4, $D_r =$ 9.558 (2) Å, 1.12 g cm^{-3} , $\lambda(\text{Cu } K\alpha) = 1.5418 \text{ Å}$, $\mu = 5.72 \text{ cm}^{-1}$, F(000) = 864, room temperature, R = 0.046 for 1416 observed reflections. Intermolecular contacts involve hydrogen bonds of the type $HO2\cdots O3^{i} = 1.88$ (5) Å with O2—HO2···O3ⁱ = 163 (5)° (i = $-x + \frac{3}{2}, y + \frac{1}{2}, z$).

Experimental. Siemens AED single-crystal diffractometer controlled by an IBM PS2/30 personal computer. Elongated prismatic crystals of about $0.3 \times$ 0.3×0.6 mm, accurate unit-cell parameters from a least-squares fit to 30 reflections $(11 \le \theta \le 28^\circ)$, intensities measured using a modified version (Belletti, Cantoni & Pasquinelli, 1938) of the Leh-

Table	1.	Atomic	fractional	coordinates	(×10 ⁴)	and	
			U_{aa} (\times 10	$(^{4} \text{ Å}^{2})$			

Table	1 Atomic t	ractional coo	rdinates (×	10^{4}) and	O3-C13	1.232 (6)	C7C10
Iuone	1. <i>monue</i> j	$T_{L} (\times 104 ^{3}2)$			04—C13	1.333 (6)	
		U_{eq} (10 A)		04—C14	1.4/5 (6)	C12 - C18
				7 7 *	N-C12	1.456 (6)	
	x	У	Z	U_{eq}	N-C13	1.330 (7)	C14C16
01	8200 (1)	2262 (3)	- 763 (4)	502 (11)	C1C2	1.387 (6)	CI4CI7
O2	7198 (1)	3335 (3)	- 952 (4)	451 (11)	C1C6	1.390 (6)	C18C19
O3	7886 (2)	393 (3)	2653 (4)	519 (12)	C1C11	1.531 (7)	C19—C20
O4	7786 (2)	2372 (3)	3571 (3)	492 (12)	C2C3	1.408 (7)	C19—C24
N	7303 (2)	1854 (4)	1676 (5)	396 (13)	C3C4	1.386 (7)	C20—C21
Cl	7956 (2)	4085 (4)	605 (4)	360 (12)	C3C7	1.551 (7)	C21–C22
C2	8358 (2)	3236 (4)	99 (4)	374 (13)	C4—C5	1.409 (7)	C22—C23
C3	8937 (2)	3358 (4)	436 (5)	419 (14)	C5C6	1.366 (7)	C23C24
C4	9087 (2)	4368 (5)	1294 (6)	514 (19)			
C5	8689 (2)	5274 (5)	1764 (6)	529 (20)	C13-04-C14	123.1 (3)	O2C11C12
C6	8131 (2)	5104 (4)	1429 (5)	434 (15)	C12-N-C13	127.7 (4)	NC12C11
C7	9389 (2)	2391 (5)	- 77 (6)	539 (19)	C6C1C11	118-1 (3)	C11—C12—C18
C8	9230 (3)	1046 (6)	442 (9)	716 (25)	C2-C1-C11	122.5 (3)	NC12C18
C9	9410 (3)	2402 (10)	- 1679 (7)	874 (32)	C2C1C6	119-2 (4)	04C13N
C10	9968 (3)	2736 (8)	487 (11)	933 (31)	01–C2–C1	120.3 (3)	03C13N
C11	7319 (2)	3903 (5)	365 (5)	393 (15)	C1-C2-C3	121.6 (3)	O3-C13O4
C12	7043 (2)	3108 (4)	1548 (5)	406 (16)	O1-C2-C3	118-1 (3)	O4—C14—C17
C13	7673 (2)	1465 (4)	2635 (5)	391 (15)	C2-C3-C7	122.3 (4)	O4-C14-C16
C14	8159 (2)	2168 (5)	4789 (5)	442 (16)	C2C3C4	116.9 (4)	O4-C14-C15
C15	7922 (4)	1109 (8)	5686 (7)	677 (29)	C4C3C7	120.8 (4)	C16C14C17
C16	8124 (4)	3442 (7)	5526 (8)	746 (25)	C3—C4—C5	122.3 (4)	C15-C14-C17
C17	8755 (3)	1889 (10)	4325 (9)	740 (33)	C4—C5—C6	118.6 (4)	C15-C14-C16
C18	6398 (2)	2971 (6)	1317 (7)	509 (19)	C1-C6-C5	121.3 (4)	C12-C18-C19
C19	6094 (2)	2546 (5)	2581 (6)	530 (19)	C3-C7-C10	110.6 (5)	C18-C19-C24
C20	5970 (3)	1242 (7)	2788 (8)	699 (24)	С3—С7—С9	109.5 (4)	C18-C19-C20
C21	5684 (3)	881 (11)	3995 (12)	993 (41)	C3-C7-C8	109.3 (4)	C20-C19-C24
C22	5510 (4)	1726 (14)	4960 (9)	1092 (46)	C9C7C10	109.0 (5)	C19-C20-C21
C23	5622 (4)	2994 (11)	4751 (11)	1188 (47)	C8C7C10	108.9 (5)	C20-C21-C22
C24	5907 (3)	3378 (9)	3556 (9)	890 (32)	C8—C7—C9	109-6 (5)	C21—C22—C23
	. /	. ,			02-C11-C1	112.4 (3)	C22—C23—C24

* Hamilton (1959).

0108-2701/90/020333-02\$03.00

© 1990 International Union of Crystallography

111.7 (3)

C19-C24-C23

mann & Larsen (1974) method, nickel-filtered Cu $K\alpha$ radiation. θ range 3–70°, one check reflection monitored every 50 measurements showed a decrease in intensity of about 11%, intensities corrected for this decay, for Lorentz and polarization effects, but not for absorption. 2588 reflections collected, index range h 0/28, k 0/12, l 0/11, 2569 independent reflections $(R_{int} = 0.049)$, 1423 with $I > 2\sigma(I)$ observed. The structure was solved by direct methods with MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980), block-matrix anisotropic least-squares refinements with SHELX76 (Sheldrick, 1976). H atoms found in difference Fou-

Table 2. Bond distances (Å) and angles (°)

C7-C8

C7---C9

1.542(9)

1.532 (9)

1.512 (9) 1.548 (7)

1·543 (7) 1·510 (10)

1.513 (9) 1.502 (9)

1.474 (8)

1.413 (9)

1.351 (10)

1.389 (13)

1.343 (16) 1.371 (18)

1.385 (13)

109.7 (3) 111.8 (3)

111.1 (4)

110.0 (3)

112.0 (3) 123.9 (4)

124.1 (4)

110.7 (4)

101.9 (4)

109.5 (4)

111.1 (5)

111.7 (5)

111.4 (5) 113.0 (4)

121.9 (6)

120.6 (5)

117.5 (5) 118.7 (7)

122.6 (10)

118.8 (8)

119.7 (9)

122.6 (8)

1.364 (5)

1.422 (6)

O1-C2

02-C11

CI-CII-CI2

Fig. 1. Projection of the molecule.

rier maps and refined isotropically, $\sum w\Delta F^2$ minimized with weighting scheme $w = 0.4035/(\sigma^2 F + 0.00621F^2)$, seven reflections omitted because of extinction, $(\Delta/\sigma)_{max} = 0.82$, $\Delta\rho_{max} 0.19 \text{ e} \text{ Å}^{-3}$, 395 variables, final refinement converged to R = 0.046and wR = 0.051. Atomic scattering factors from SHELX76.*

Final atomic fractional coordinates are listed in Table 1, bond distances and bond angles are presented in Table 2. A projection of the molecule with the numbering scheme is shown in Fig. 1.

All the calculations were performed on an IBM PS2/80 personal computer with the CRYSRULER

package (Rizzoli, Sangermano, Calestani & Andreetti, 1987).

Related literature. The synthesis of the title compound forms part of a series of studies on direct diastereoselective synthesis of ephedrine-like compounds by hydroxylalkylation of metal phenolates with N-protected α -amino aldehydes (Bigi, Casnati, Sartori & Araldi, 1989).

Boc = tert-butoxycarbonyl MX = methylene chloride

References

- BELLETTI, D., CANTONI, A. & PASQUINELLI, G. (1988). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema IBM PS2/30. Internal report 1/88. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
- BIGI, F., CASNATI, G., SARTORI, G. & ARALDI, G. (1989). Gazz. Chim. Ital. Submitted.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- LEHMANN, M. S. & LARSEN, F. K. (1974). Acta Cryst. A30, 580-589.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- RIZZOLI, C., SANGERMANO, V., CALESTANI, G. & ANDREETTI, G. D. (1987). J. Appl. Cryst. 20, 436-440.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1990). C46, 334-336

Structure of 3β -Hydroxy-5-androsten-17-one (DHEA) Monohydrate

BY PHILIP J. COX AND STEPHEN M. MACMANUS

School of Pharmacy, Robert Gordon's Institute of Technology, Schoolhill, Aberdeen AB9 1FR, Scotland

BRUCE C. GIBB AND IAN W. NOWELL

School of Chemistry, Robert Gordon's Institute of Technology, St Andrew St, Aberdeen AB1 1HG, Scotland

AND R. ALAN HOWIE

Chemistry Department, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland

(Received 29 June 1989; accepted 27 September 1989)

Abstract. $C_{19}H_{28}O_2$. H_2O , $M_r = 306.4$, orthorhombic, $P2_12_12_1$, a = 22.545 (7), b = 22.673 (22), c = 6.819 (2) Å, V = 3485.6 Å³, Z = 8, $D_x = 1.17$ g cm⁻³, Mo K α , $\lambda = 0.71069$ Å, $\mu = 0.43$ cm⁻¹, F(000) = 0108-2701/90/020334-03\$03.00 1344, T = 293 K, R = 0.071 for 1308 observed reflexions. The asymmetric unit contains two steroid molecules of similar conformation and two water molecules. Extensive hydrogen bonding is present © 1990 International Union of Crystallography

^{*} Lists of structure-factor amplitudes, H-atom coordinates with isotropic thermal parameters and anisotropic thermal parameters of heavy atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52205 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.